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Learning Objectives

After reading this article, you

should have learned about: 

◆ How transient vibrations arise

◆ Why rope vibrations often occur

at particular positions in the

hoistway

◆ Why, when considering tran-

sient rope vibration, even a

high-speed elevator may be

treated as if it were stationary

◆ Why lateral rope vibrations may

give rise to longitudinal vibra-

tion and vice versa

◆ Why transient rope vibration

may be very difficult to eliminate

Rope Dynamics
by Phil Andrew, MSc, MPhil and Stefan Kaczmarczyk, PhD

Value: 2 contact hour

(0.2 CEU)

This article is part of ELEVATOR WORLD’s 

Continuing Education program. Elevator-industry

personnel required to obtain continuing-education

credits can receive two hours of credit by reading

the article and completing the assessment exami-

nation questions found on page 118.

For this article and more continuing-education 

opportunities, visit www.elevatorbooks.com.

Focus on

Wire Ropes

Rope vibrations in an elevator

system usually result in a ride quality

that is unacceptable. A well-known

phenomenon is “transient” vibration,

which occurs at a specific point in

the elevator travel, usually near the

upper floors, and can be extremely

difficult to eliminate. We will seek to

show that oscillations in the roping

system may be considered “rapid” in

comparison with the rated speed of

the elevator (even for “high-speed”

elevators rated at 12 mps [2400 fpm]

or more). We will show how, for the

purpose of analyzing the dynamic

behavior of the roping system, a

moving elevator may be considered

“quasi-stationary.”

Hamilton’s Principle and classical

mechanics will be employed to derive

the dynamic equations that describe

the oscillation of the ropes. The result-

ing partial differential equations will

be presented in order to explain how

lateral and longitudinal oscillations

in the suspension system turn out to

be cross coupled, so that a lateral

 oscillation of the ropes can initiate

longitudinal vibrations and vice

versa. Finally, we will work through

an example to show how transient

vibrations may arise at particular

 locations in the elevator travel and

highlight why such rope oscillation

and vibration is so difficult to elimi-

nate, and look briefly at some of the

solutions to the problem that have

been proposed in the past.

Suspension System Dynamics

There are likely very few elevator

engineers who have not been faced

with an elevator system exhibiting

unwanted vibration in one form or

another. The underlying causes of

 vibration in an elevator system are

varied, including poorly aligned guide-

rail joints, eccentric pulleys and

sheaves, systematic resonance in the

electronic control system, and gear

and motor generated vibrations.

In many cases, an elevator will

not vibrate throughout its travel, but

will “pass through” a resonant vibra-

tion at some particular stage in the

travel. Very often, this vibration

stage occurs at or near the highest

floor, as the suspension ropes be-

come short. Figure 1 indicates the

kind of phenomenon that might be

experienced. Continued
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However, whatever the underlying cause of the vibration,

in almost all cases, the vibration will excite an  associated vi-

bration in the ropes, whether it be the suspension ropes or

the compensation ropes. The  vibration is thus coupled into

the car with consequent deterioration in ride quality. The

term “vibration” has colloquial connotations of relatively

high frequency and may be confusing if we intend to include

“rope sway” in the discussion. Consequently, we shall employ

the term “oscillation” in preference to “vibration,” since this

term has a colloquial context of a wider frequency range.

Let us start with a simple model. Consider the suspen-

sion and compensation ropes of a stationary elevator. As

we have discussed, the suspension will be stretched elas-

tically by the mass of the elevator and its load. In the ver-

tical direction, the elevator car is free to move and can

oscillate on the “spring” of the suspension ropes as shown

in Figure 2(a). We shall designate oscillations in the vertical

direction by the variable u, indicating vertical displace-

ment from the quiescent position, u̇ indicating the vertical

velocity of the oscillation of the elevator car (i.e., not its

velocity of travel through the hoistway) and ü indicating

vertical acceleration associated with the oscillation.

Since the elevator car is held in the guides and cannot

move freely in the horizontal direction, lateral oscilla-

tions of the suspension ropes are constrained at each

end. The oscillations are constrained in a similar (though

not quite identical) manner to a guitar or violin string

(Figure 2(b) and (c)). Nevertheless, the rope can oscillate in

any horizontal direction. In order to generalize the  discussion

as far as possible, we will resolve the lateral  oscillations

into orthogonal displacements, v, v̇ and v̈  indicating mo-

tion in the plane of the guides (in plane), and w, ẇ and ẅ

orthogonal to the plane of the guides (out of plane).

Thus, if the ropes oscillate in a direction x at some

angle θ to the plane of the guides, then the in-plane and

out-of-plane motions will be

v = x cosθ, v̇ = ẋ cosθ and v̈ = ẍ cosθ

in the plane of the guides, and

w = x sinθ, ẇ = ẋ sinθ and ẅ = ẍ sinθ

in the orthogonal plane.

Of course, we might have a situation where the ropes

are “whirling” in their oscillations; in which case the

angle θ will itself be a function of time, i.e., θ = θ(t).

The nature of current suspension-rope materials is such

that the damping of any rope vibrations is fairly small.

An analysis of rope oscillation based on elementary

mechanics might indicate that if M is the total suspended

mass (kg) (not including the mass of the suspension

ropes) and k is the stiffness of the ropes (N/m), then in

the vertical plane, we would have a potential “natural” or

“resonant” oscillation frequency: 

......................................................................(Equation 1)

Focus on

Wire Ropes

Even if we did allow for the mass of the suspension

ropes, the simple model above does not reflect the true

situation. In practice, there will be additional harmonic

frequencies that can lead to phenomena apparent to the

passenger.

In the lateral direction, we might expect oscillation

 frequencies

where L is the length of suspension rope, nSR is the num-

ber of suspension ropes and mSR is the mass/m of the

suspension rope, noting once more that Mgn, the equa-

tion for rope tension, does not include the mass of the

suspension rope itself. With lateral oscillation, even a

simple analysis indicates that harmonic frequencies are

possible.

Although this gives us an intuitive idea of what we might

expect, the situation is significantly more complex. In order

to get a more realistic picture of the oscillation modes of

the suspension ropes, we will have to take into account

more complex phenomena than we have considered so far.

The “Slowly Varying” System

The first complicating factor is the issue raised by the

motion of the elevator car itself. Our sim plistic picture of

the oscillation mechanisms has been based on a station-

ary elevator car; in practice, the elevator may be in mo-

tion, so that the length of the suspension ropes is chang-

ing with time. The suspended mass M(t) and rope length

L(t) are now functions of time. The suspended mass M(t),

which still does not account for the mass of the suspen-

sion ropes, will vary due to the changing mass of com-

pensation ropes/chains and traveling  cables suspended

from the car as the elevator travels through the hoistway.

Even in our simplistic model, the stiffness k will vary as

the length of the ropes changes, varying the longitudinal

frequency ωu0, and, of course, the change in length di-

rectly affects the lateral frequencies ωxn.

Kaczmarczyk[1] has shown that we can define a dimen-

sionless parameter

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Equation 2)

where V is the elevator rated speed (mps), ω0 rad/s is the

lowest natural frequency (either lateral or longitudinal),

and L(t) is the suspension rope length (m).[1] Note that the

issue here is not the speed of the ropes, but the rate at

which the ropes are shortening. Consequently,

 independent of the reeving (1:1, 2:1, etc.) the parameter ε

is a function of elevator speed, not rope speed.

Kaczmarczyk (ibid.) reports that if we can be satisfied that

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Equation 3)
Continued
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Figure 2: Vibration modes

then we can define the system as varying slowly, meaning that we can take

any particular position of the ele vator, whether or not it is in motion, and treat

it as if the elevator were stationary.[1]

Looking at lateral oscillations of the ropes, the elementary treatment referred

to above suggests that the natural frequency of the ropes will be

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Equation 4)

However, this simple equation assumes that the rope itself has zero bend-

ing stiffness and is orientated horizontally. Sun[2] suggests that for a more ac-

curate  estimate of the mean natural frequency of a vertical suspension, we

need to account for the influence of the rope mass on the mean tension. The

mean rope tension T needs to include half the weight of the rope, i.e. 

Including lateral harmonic oscillation frequencies as well as the natural

 frequency, Equation 4 then becomes

i.e.    n= 1, 2, 3 . . . . . . . . . . . . . . . . .(Equation 5)

The term inside the square-root sign suggests that the natural

frequency of the oscillation will be higher than is suggested by the simple 

analysis of a horizontal, stretched string, and that with longer ropes (i.e.,

longer travel), the natural frequency of the ropes will not fall off as rapidly as

Focus on

Wire Ropes

Continued
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Clearly, the material tensile stress at the minimum break-

ing load will be the same, and for similar rope construction,

the rope space factor (steel area:total area) will also be 

reasonably constant, leading to the steady value for .

Table 1: Values of    for standard suspension rope

With significantly smaller rope sizes, as are applied in
some special designs, the space factor of the rope will 

begin to change, modifying the calculated value of . 

Of course, during system design, the minimum permis sible
safety factor will be determined for the case where the
 elevator car is carrying rated load, taking into account both
standards requirements and the constraints of achieving
a satisfactory rope life. 

Any other loading is accounted for by calculating the
higher safety factor associated with the lower loading,
e.g., if the rated load is 1200 kg and the car-side fixed
mass is 1600 kg, then if the system is designed for a
safety factor of 16 at rated load, the safety factor with
empty car will be

If, as a conservative estimate, we base our analysis on

an empty car with maximum factor of safety value 30,

then Equation 8 becomes

  

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Equation 9)

We can now investigate εmax for a range of rated speed

and travel. For this purpose, we will take the maximum

practical travel as the lesser of 300 m or the travel

 distance the elevator can complete in a maximum of 60

s, allowing for constant acceleration/deceleration pro-

files at 1 mps2 (i.e., ignoring limitations imposed by jerk

requirements).

would be predicted by the simple model of Equation 4.

Nevertheless, the frequency will still be at a minimum

when the car is at the lowest point of travel, leading to

the largest value for ε. If we define Lmax as the rope length

when the car is at the lowest point in its normal travel,

then

Given that the loading on the ropes is governed by

safety standards, we can relate Equation 5 to the rope

characteristics via the guaranteed minimum breaking

load of the rope and the safety factor.

We will define SfM as the factor of safety at the lowest

point of travel (varying, mainly depending on passenger

load but also due to changes in total car side suspended

mass as the elevator travels through the hoistway), and

Fmin as the specified minimum breaking load for the rope.

With these definitions, then at the lowest point of travel

i.e.  . . . . . . . . . . .(Equation 6)

Combining Equations 5 and 6, the lowest mean natural

frequency can be expressed as

 . . . . . . . . . . . . .(Equation 7)

Combining Equations 2 and 7, and given that, in prac-

tice, the lateral oscillation frequencies will be lower than

the longitudinal frequency, the largest value of ε will be

 . . . . . . . . . . . . . . . .(Equation 8)

Taking the rope tables for a range of standard, fiber-cored

suspension ropes, we can examine the value of for

various rope sizes and safety factors. Unsurprisingly, 

Table 1 shows that for any given value of safety factor S f, 

the value of       does not vary significantly in the range                 

of standard rope sizes between 11 mm and 19 mm.
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Figure 3: Values of εmax relative to rated speed and travel

The result is shown in Figure 3, demonstrating that

with this conservatively high estimate for factor of safety

and maximum travel, we can say that at a rated speed of

12 mps,

allowing us to treat the elevator as quasi-stationary. Fur-

thermore, given that experience shows that the problems

usually arise near the upper limit of travel,   in the area of

interest in the hoistway the actual value of ε will be signifi-

cantly lower than this maximum estimate. It turns out that at

a rated speed of 12 mps, the value of ε at the slowdown

point for the upper terminal floor is in the order of 0.052.

Figure 4: Dynamic model of the rope system 

The Dynamic Model

Figure 4 shows a suitable dynamic model of the ele -

vator system. In order to make the mathematics of the

analysis more straightforward, the model employs a 

“moving frame of reference.” In the model, all the dis-

tances are measured from a moving origin located at a

fixed distance Lmax above the car top, where Lmax (m) rep-

resents the suspension-rope length when the car is at 

the lowest position. Thus, LT(t) represents the distance

traveled by the car (m); V(t) is the elevator car speed

(mps); M(t) is the car-side mass (kg) including the mass of

any compensation ropes/chains, travelling cables, etc.; msr

is the mass per unit length of the rope (kg/m); T(t) is the

mean rope tension; A is the rope cross sectional area (9

mm2); and E is the Young’s modulus for the rope (N/mm2).

Now we need some very clear thinking. If the ropes are

still, i.e., not oscillating, then we can define a variable s

to represent the position of any point along the length of

the rope, relative to the (moving) datum position. In these

conditions, we can say that the rope is “un-deformed,”

since it is only stretched by the suspended mass. At the

extreme end, s = Lmax is the mean position of the point

where the suspension meets the car top.

If a rope begins to oscillate, either vertically or later-

ally, it becomes dynamically deformed, i.e., a given point

will be displaced from its quiescent position, s meters

from the datum, by the (relatively) small amounts ±u (ver-

tically), ±v (lateral in plane) and ±w (lateral out of plane).

Now let us examine what is happening if the system is

in motion and oscillating. We will assume for the moment

that the elevator machine and control system are “very

stiff,” i.e., any oscillations in the ropes are not propagated

beyond the point where the ropes come into contact with

the sheave (the oscillations might themselves be initiated by

oscillation propagated from the machine and/or control

system, but since we are looking at the dynamics of the

ropes themselves, we are assuming here that there is no

“forcing function” coming from the sheave). Since, in terms

of motion through the hoistway, the system is “slowly

varying,” we can consider the motion of a point at posi-

tion s along the ropes as if the elevator were actually

 stationary except for the oscillations. In these circum-

stances, the total energy in the system would be constant,

and we can apply Hamilton’s Principle[1], which states

that over time, the time integral of the difference between

the kinetic and potential energy in the system will be sta-

tionary. Note that in the context of the elasticity of the

ropes, the potential energy of the system includes the

strain energy in the ropes themselves. In mathematical

terms,

 . . . . . . . . . . . .(Equation 10)

where δ represents variation, K.E. is the system kinetic 

energy, P.E. is the gravitational potential energy and S.E.

is the strain energy.

Be very clear about what Equation 10 means and what

it doesn’t. If the  elevator car is accelerating downward,

then the total kinetic energy of the system is increasing

due to the acceleration, and the total potential energy is

 reducing, since motion is in the down direction (assum-

ing that the car mass is greater than the counterweight

mass). Conversely, if the car is slowing while traveling

upward, total kinetic energy is reducing, while total poten-

tial energy is increasing. Continued



However, that is not the issue we are discussing here. Instead, we are tak-

ing a “snapshot” of the elevator car in motion at some point in the hoistway

and looking at how the energy in the system at that instant is being trans-

ferred between the oscillatory motion of the ropes (u̇, v̇, ẇ, and ü, v̈, ẅ), the po-

sition of the point on the ropes (u, v, w) and the strain energy in the ropes. Of

course, u, v, w and their time derivatives will vary depending on where we

measure them along the rope, i.e., they will depend not only on time, but also

on s, the location along the rope, so that at the moment when we take our

snapshot, each is a function of both s and t. Again, in mathematical terms

 . . . . . . . . . . . . . . . . . . . . . . . .(Equation 11)

To get any further with this analysis, we would need to go into the mathe-

matics of classical mechanics. However, for the elevator engineer, it is the

outcome of the analysis that is important, not the analysis itself. The outcome

is a set of differential equations describing the oscillatory motion. We are not

going to attempt any solution of these equations here, but simply present them

to demonstrate that the three displacements u, v, and w are interdependent.

One set of three equations

describes the motion of a point on the suspension ropes, while a fourth equation

describes the oscillating motion of the elevator car. Note that this final equa-

tion is evaluated at the position s = Lmax, i.e., at the mean position where the

suspension meets the car top. At this position, v = w = 0, since the ropes can-

not move laterally where they are attached to the car, so the equation does

not include any terms relating to v and w or their derivatives.

While this set of four equations is extremely complex, the point of interest

for the elevator engineer is simply that all of the three motions u, v and w

 appear in each differential equation of the set describing the rope oscillations.

This indicates that the three motions are coupled one to the other and will

 interact. Thus, a lateral oscillation of the ropes can generate a longitudinal

 oscillation and vice-versa, and any and all of the modes of oscillation will lead

to oscillations of the elevator car.

It’s fairly clear that at any instant, the mean tension at any point in the sus-

pension rope will be

Note that since we are assuming that the ropes are  oscillating, this is the

mean tension. The actual instantaneous tension will depend on the amplitude

and frequency of the oscillations.
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From the set of differential equations above, the natural

frequencies of the longitudinal oscillations can be deter-

mined from the equation

 . . . . . . . . . . . .(Equation 12)

where γn are the solutions of 

 . . . . . . . . . . . .(Equation 13)

and L(t) = Lmax – LT(t) (Figure 4)

Thus, in this more detailed analysis of the rope oscilla-

tion, we find that, contrary to the simplistic prediction of

Equation 1, there are possible (and likely) “harmonics” of

the longitudinal natural frequency of oscillation of the ropes.

Based on the “slowly varying” criterion, we can use

Equation 5 to account for lateral oscillations at any point

in the hoistway:

 . .(Equation 14)

As we did earlier, we can substitute in Equations 13

and 14 from the relation

treating the variation of suspended mass over time as a

variation in the safety factor, i.e.

and (Equation 15)

thereby expressing the frequency equations in terms of

the rope characteristics.

There is a number of possibilities for the excitation of

oscillations in the ropes:

◆ The excitation may be generated from the machine

and/or control system through:

• Sheave/pulley eccentricity

• Cyclic phenomena in a speed-reduction unit (e.g.,

number of starts on a worm shaft)

• Electromagnetic phenomena in the motor (asym-

metrical rotor windings in DC machines, spurious

conducting paths in the rotor construction, e.g.,

uninsulated core bolts)

• Frequency instability in the motor drive

◆ Eccentric roller guide shoes

◆ Impulsive input from one or more guide joints

◆ Guide misalignment

◆ It may occur that one or more of the longitudinal reso-

nant frequencies predicted by Equation 12 coincides

with a lateral frequency predicted by Equation 14.

◆ The building itself may have resonant frequencies co-

incident with one or more of the frequencies predicted

by Equation 12 and/or Equation 14.

Example

Consider an elevator with the following parameters:

Car-side fixed mass P 1600 kg

Rated load Q 1250 kg

Reeving factor r 2:1

Suspension-rope length 

with car at lowest position L0 60 m

Number of suspension ropes nR 6

Number of compensation ropes nCR 4

Number of traveling cables nTC 3

Suspension rope mass/m mR 1.2 kg/m

Compensation rope mass/m mCR 1.6 kg/m

Traveling cable mass/m mTrav 0.5 kg/m

Suppose that the rated speed is 3.5 mps and that the

traction sheave has a diameter of 560 mm but is slightly

eccentric, generating a longitudinal disturbance to the

suspension ropes at a frequency of approximately 4 Hz

when the elevator is running at rated speed. The first four

calculated longitudinal natural frequencies of the suspen-

sion ropes (ω0u, ω2u, ω3u and ω4u) are shown in Figure 5

plotted against the suspension-rope length.

Figure 5: Longitudinal natural frequencies

Superimposed on the plot are shaded areas indicating

the floor positions of the building. Each floor position is

located at the boundary of a shaded area as shown. It is

clear from the diagram that the fundamental longitudinal

frequency (ωou) is quite low, as might be predicted from

experience.

However, when we look at the second, third and fourth

resonant frequencies, we see quite clearly how these

 increase as the elevator approaches the highest position.

In a motor drive linked to mains frequency (e.g., a variable-

voltage DC drive), it is likely that there will be a certain

level of excitation generated by the drive at either 300 Hz



July 2011 | ELEVATOR WORLD | 55

or 600 Hz (based on a 50-Hz supply) or 360 Hz or 720 Hz

(based on a 60-Hz supply). Clearly, at a number of loca-

tions between the 11th and 13th floors, any such exci -

tation will coincide with one of the natural frequencies of

the suspension and may well generate an associated

 vibration in the elevator car – a phenomenon of transient

vibration as the elevator approaches the upper floors,

which is well observed in practice, as we indicated in

 Figure 1.

If we now consider the lateral frequencies (Figure 6),

superimposed on the diagram is the variation in the fun-

damental (lowest) longitudinal natural frequency (dotted

line). The horizontal (double-dotted) lines show the loca-

tion of the fundamental frequency and second harmonic

frequency of the eccentric pulley.

Figure 6: Lateral natural frequencies

The nine points where there is a coincidence between

the pulley frequency and one of the natural frequencies

are indicated by circles, starting with a coincidence

 located between the first and second floors where the

longitudinal frequency coincides. This low frequency might

be significant in that it could possibly excite a natural fre-

quency of the compensation ropes, initiating rope sway

beneath the car or oscillation of the compensator mass.

Of particular interest is the coincidence between the

second harmonic of the sheave frequency, the longitudinal

fundamental frequency and the fourth lateral frequency at

approximately 7.5 Hz just above the 11th floor, with an

additional coincidence between the second lateral fre-

quency and the fundamental pulley frequency at around

4 Hz at almost the same position. There is a further coin-

cidence of resonances as the elevator runs into the top

floor. It could be predicted that this elevator might have

some serious vibration problems, particularly around the

11th floor.

Summary

Transient vibrations at certain locations within the

 elevator hoistway are a well-recognized phenomenon. By

considering the elevator suspension as a slowly varying

system, the dynamic equations for lateral and longitudi-

nal displacements can be established by the application

of Hamilton’s Principle, which suggests that the variation

in the time integral of the difference between the kinetic

energy and the potential energy of the system is stationary

over time, i.e.,

 . . . . . . . . . . . .(Equation 10)

The set of nonlinear differential equations that results

from the analysis clearly indicates that there is cross cou-

pling between longitudinal and lateral oscillations in the

ropes. Consequently, if, at some location in the hoistway,

the longitudinal and lateral natural frequencies coincide,

there is the likelihood that this cross coupling will excite

a transient vibration in the car. The numerical example

demonstrates that there is the potential for transient

 oscillations at several locations in the hoistway, particularly

near the upper floors, where external forcing influences

such as minor sheave eccentricity may coincide with one

or more of the natural frequencies of the system.

While it is useful to explain the source of such transient

vibrations and to be able to predict where and how they

might arise, a practical engineer will question what pal-

liative or curative measures can be taken to reduce or

eliminate the effect. Experience demonstrates that this is

far from a simple matter. The resonant frequencies are a

function of the rope tension and rope length, which makes

it quite difficult to move the resonance out of the way,

since these parameters are fundamental to the elevator

installation. Increasing the mass of the elevator would

lower the resonant frequencies, but that would probably

mean that the resonance simply moved to a location

 further up the hoistway. It would be fortuitous if it were

possible to lower the resonant frequencies sufficiently to

move the location of the resonance beyond the highest

point in the travel.

The major contribution to the problem arises from the

rope characteristics. As we noted at the beginning of the

discussion, conventional steel wire-rope construction

provides a suspension member with very little damping,

i.e., once the vibration has been started, there is not

much in the rope construction to absorb or dissipate the

vibration energy. It is the absorption/dissipation of the

 vibration energy that is key to alleviating rope transmit-

ted vibrations. New rope materials such as Kevlar® have

better damping characteristics and should be less prone

to the problem. However, these types of rope do not (yet)

find universal application, and while they are becoming

more common, extensive service experience such as is

available with traditional steel wire ropes has not yet

been built up. Continued
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Learning-Reinforcement Questions

Use the below learning-reinforcement questions to study for the Continuing Education Assessment Exam avail-

able online at www.elevatorbooks.com or on page 118 of this issue.

◆ If an elevator is exhibiting transient vibration due to lateral rope vibration, what is the effect of increasing the

safety factor of the ropes (i.e., reducing the load per rope)?

◆ Why does the value of the parameter ε determine whether the elevator may be considered “quasi stationary”?

◆ Why can we predict that horizontal rope oscillations may give rise to vertical oscillation and vice versa?

◆ Contrary to the simple model of a mass oscillating on the end of a spring, when a rope under tension is modeled

using Hamilton’s Principle, the model predicts multiple longitudinal resonant frequencies. Why should this be so?

◆ Why does resonant vibration depend only upon the elevator position, while the influence of elevator speed can

be considered small?

◆ Given that any transient resonant vibration relates more to elevator position than to elevator speed, what is likely

to be the most successful strategy for eliminating the problem in any particular case?

◆ When evaluating the parameter ε,�we based the calculation on the lowest lateral resonant frequency, rather than

the lowest longitudinal resonant frequency. Why?

◆ In evaluating whether an elevator may be considered “quasi stationary,” we based our calculations on a rope fac-

tor of safety of 30. Given that safety codes permit a safety factor as low as 10 or 12, why would we base the cal-

culation on such a high value?

◆ What do we mean by “transient vibration”?

◆ When looking at the lateral oscillations of the ropes, why is the simple expression

not adequate for predicting the onset of transient vibration?

Several authors have proposed a range of methods for

damping out rope sway in compensation and suspension

ropes.[1,3 & 6] Robertson[3], Barker[4] and Traktovenko[5] have

patented mechanical methods to restrain the amplitude of

rope oscillation at one or more points  between the elevator

car and the end of the hoistway. Salmon and Hiller[6]

patented a hydraulic tie-down system for the compen-

sator to minimize sway in the compensation ropes.

It is conceivable that an intelligent, active anchorage

on the elevator car might be used to isolate the car from

any oscillation in the suspension ropes, but such a system

would be complex. Bearing in mind that the rope anchor-

age is fundamental to the integrity of the suspension, the

safety implications of such an approach would also need

considerable investigation and might have difficulty in

the context of the essential safety requirements inherent

in elevator safety codes. 
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1. Which of the following statements relating to lateral

oscillations of a suspension rope is incorrect?

a. In calculating lateral oscillation frequencies, we

must account for the mass of the suspension rope,

as well as the mass of the elevator car.

b. The vertical orientation of the suspension ropes

does not affect the oscillation frequency.

c. The mass of the suspension ropes increases the os-

cillation frequency to a slightly higher value than

would be predicted by the simple theory of a

stretched string.

d. As the elevator travels up the hoistway and the sus-

pension ropes become shorter, the lateral natural

frequencies of the ropes increase.

2. Consider the following two statements regarding the

“quasi-stationary” nature of an elevator:

i. If the ratio

is much smaller than unity, then the elevator may be

considered “quasi stationary.”

ii. Because an elevator may be considered “quasi-

stationary,” we can apply Hamilton’s Principle to deter-

mine the differential equations of motion of any point

along the ropes between the car top and the traction

sheave.

a. Statement i is true, and statement ii is false.

b. Both statements are false.

c. Both statements are true.

d. Statement i is false, and statement ii is true.

3. Transient resonant vibration is most likely:

a. Near the bottom of the hoistway.

b. In the middle of the hoistway.

c. Equally likely at any point in the hoistway.

d. Near the top of the hoistway.

4. Which of the following statements is incorrect?

a. Transient vibration may occur if one of the longitu-

dinal or lateral natural frequencies of the rope system

coincides with an external excitation (e.g., poorly

aligned guide rail joints, imperfections in the gear-

box, eccentric reeving pulleys, etc.).

b. Transient vibration will be more likely if there is co-

incidence between any of the lateral resonant fre-

quencies and one of the longitudinal resonant fre-

quencies.

Elevator rated speed                                                                              
Lowest resonant frequency x Maximum rope length

c. Vibration is transient, because the stiffness of the

ropes damps out the vibrations after a short time.

d. Transient vibration depends on position in the hoist-

way, not upon the rated speed of the elevator.

5. The statements below relate to Hamilton’s Principle

and the vibration of the elevator car:

i. The expression 

defining Hamilton’s principle is concerned with the os-

cillatory motion of each small element of the rope, not

with the overall energy of the system.

ii. Because the differential equation 

describing the oscillation of the elevator car does not

contain the parameters v(s,t) and w(s,t) defining lateral

motion of the ropes, vibration in the elevator car is in-

dependent of any lateral vibration of the ropes.

a. Statement i is true, and statement ii is false.

b. Both statements are false.

c. Both statements are true.

d. Statement i is false, and statement ii is true.

6. We have used the symbols u, v and w to indicate oscil-

latory displacement in each of the three orthogonal

planes: longitudinal, lateral in-plane and lateral out-

of-plane. With regard to the u, this indicates:

a. Vertical motion of a point on the ropes, including the

speed of travel of the elevator car.

b. The longitudinal displacement of a point on the

ropes from its quiescent position.

c. Vertical position of a point on the ropes as the ele-

vator travels through the hoistway.

d. The longitudinal frequency of oscillation of a point

on the ropes about its quiescent position.

7. If the lateral oscillation of the ropes is in a direction x

at an angle θ to the plane of the guides, then if v indi-

cates displacement in the plane of the guides, and w

indicates displacement orthogonal to the plane of the

guides:

Focus on

Wire Ropes
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a. v = xsinθ, w = vcosθ.

b. v = xsinθ, w = xcosθ.

c. w = xcosθ, v = wsinθ.

d. v = xcosθ, w = xsinθ.
8. In assessing the lateral oscillation frequencies of the

ropes, we must take account of:
a. The rope tension at the car top (i.e., excluding the

weight of the ropes themselves).
b. The rope tension at the sheave (i.e., including the

weight of the ropes themselves).
c. The mean rope tension, including 50% of the weight

of the ropes themselves.
d. The mean rope tension, including 75% of the weight

of the ropes themselves.
9. In assessing whether an elevator is a “slowly varying”

system, we must evaluate the dimensionless parame-
ter ε:

a. With the maximum factor of safety (i.e., minimum
load on the ropes) and at the lowest point in the
travel (i.e., maximum rope length).

b. With the minimum factor of safety (i.e., maximum
load on the ropes) and at the lowest point in the
travel (i.e., maximum rope length).

c. With the maximum factor of safety (i.e., minimum
load on the ropes) and at the highest point in the
travel, with the elevator traveling at rated speed
(i.e., at the slowdown point for the highest floor).

d. With the minimum factor of safety (i.e., maximum
load on the ropes) and at the highest point in the
travel with the elevator traveling at rated speed (i.e.,
at the slowdown point for the highest floor).

10. A number of external influences may lead to rope vi-
bration or oscillation during travel. Some of these may
be:
◆ Sheave/pulley eccentricity
◆ Cyclic phenomena in a speed-reduction unit (e.g.,

number of starts on a worm shaft)
◆ Electromagnetic phenomena in the motor (asym-

metrical rotor windings in DC machines, spurious
conducting paths in the rotor construction [e.g., un-
insulated core bolts])

◆ Frequency instability in the motor drive
◆ Eccentric roller-guide shoes
◆ Poorly aligned guide joints
◆ Guide misalignment
◆ It may occur that one or more of the longitudinal res-

onant frequencies coincides with a lateral fre-
quency.

◆ The building itself may have resonant frequencies
coincident with one or more of the roping-system
frequencies.

Which of the following statements is correct?
a. The building itself cannot influence the suspension

system.

b. Any or all of the above may be the cause.
c. Guide misalignment will not lead to rope oscillation.
d. Poorly aligned guide joints will only give a “jolt” and

not lead to rope oscillation.
11. Vibration generated from the mains supply (e.g.,

through the drive system for the elevator motor) is
more likely to lead to longitudinal rather then lateral
vibrations. Which of the following is not a likely expla-
nation of this phenomenon?

a. The excitation is transmitted via the traction sheave,
and the traction sheave will not vibrate laterally.

b. The longitudinal resonant frequencies are higher
than the lateral resonant frequencies.

c. The lateral resonant frequencies generally fall in a
range below the frequency of the mains supply.

d. In the upper part of the hoistway, the longitudinal
resonant frequencies may coincide with the har-
monics of the mains frequency.

12. i. Sheave/pulley eccentricity will always generate os-
cillations in the suspension ropes through the whole
length of the hoistway, simply because the point of
contact between the pulley and ropes is oscillating.
ii. The oscillation frequency generated by an eccentric
roller-guide shoe may fall in the range of the lateral
resonant frequencies of the suspension ropes at some
point in the hoistway.

a. Statement i is true, and statement ii is false.
b. Both statements i and ii are false.
c. Both statements i and ii are true.
d. Statement i is false, and statement ii is true.

13. Our analysis of rope vibration is based on the prem-
ise that the system parameters are “slowly varying.”
Given a slowly varying system, which of the following
statements is incorrect?

a. In our dynamic model of the elevator system, the
datum point from which we make our distance
measurements moves at the same speed as the ele-
vator car.

b. In analyzing rope vibration, the rope speed (not the
elevator speed) is important.

c. The lowest resonant frequencies of the compensa-
tion ropes/chains occur when the elevator is near
the highest floor.

d. The lowest resonant frequencies of the suspension
ropes occur when the elevator is near the lowest
floor.

14. i. If an elevator is suffering from transient vibration,
changing the rope characteristics (e.g., using more,
smaller ropes or replacing the existing suspension
with larger ropes) is likely to produce a significant im-
provement in performance.

ii. Because they are softer and lighter than conventional

steel-wire ropes, ropes made from new materials such

as Kevlar® are likely to be more prone to rope vibration.
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a. Statement i is true, and statement ii is false.

b. Both statements i and ii are false.

c. Both statements i and ii are true.

d. Statement i is false, and statement ii is true.

15. Our analysis of rope vibration is based on rope factor

of safety and rope minimum breaking load, rather

than elevator mass and overall rope mass:

a. Because minimum rope factor of safety is a funda-

mental parameter defined by safety codes.

b. Because the minimum breaking load of the rope is

an essential parameter of the design.

c. In order to relate the characteristics of the vibration

to the characteristics of the rope (and not to the

masses) in a particular installation.

d. In order to emphasize the relationship between ac-

tual rope loading and the expected service life of the

ropes.


